Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity.
نویسندگان
چکیده
The PAR-3/PAR-6/atypical PKC (aPKC) complex is required for axon-dendrite specification of hippocampal neurons. However, the downstream effectors of this complex are not well defined. In this article, we report a role for microtubule affinity-regulating kinase (MARK)/PAR-1 in axon-dendrite specification. Knocking down MARK2 expression with small interfering RNAs induced formation of multiple axon-like neurites and promoted axon outgrowth. Ectopic expression of MARK2 caused phosphorylation of tau (S262) and led to loss of axons, and this phenotype was rescued by expression of PAR-3, PAR-6, and aPKC. In contrast, the polarity defects caused by an MARK2 mutant (T595A), which is not responsive to aPKC, were not rescued by the PAR-3/PAR-6/aPKC complex. Moreover, polarity was abrogated in neurons overexpressing a mutant of MARK2 with a deleted kinase domain but an intact aPKC-binding domain. Finally, suppression of MARK2 rescued the polarity defects induced by a dominant-negative aPKC mutant. These results suggest that MARK2 is involved in neuronal polarization and functions downstream of the PAR-3/PAR-6/aPKC complex. We propose that aPKC in complex with PAR-3/PAR-6 negatively regulates MARK(s), which in turn causes dephosphorylation of microtubule-associated proteins, such as tau, leading to the assembly of microtubules and elongation of axons.
منابع مشابه
NGL-2 Is a New Partner of PAR Complex in Axon Differentiation.
Neuronal polarization is pivotal for neural network formation during brain development. Axon differentiation is a hallmark of initial neuronal polarization. Here, we report that the leucine-rich repeat-containing protein netrin-G ligand-2 (NGL-2) as a polarity regulator that localizes asymmetrically in rat hippocampal neurons and is required for differentiation of the future axon. NGL-2 was ass...
متن کاملRegulation of epithelial cell polarity by PAR-3 depends on Girdin transcription and Girdin-Gαi3 signaling.
Epithelial apicobasal polarity has fundamental roles in epithelial physiology and morphogenesis. The PAR complex, comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC), is involved in determining cell polarity in various biological contexts, including in epithelial cells. However, it is not fully understood how the PAR complex induces apicobasal polarity. In this study, we found that PAR...
متن کاملThe PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase.
The majority of excitatory synaptic transmission in the brain occurs at dendritic spines, which are actin-rich protrusions on the dendrites. The asymmetric nature of these structures suggests that proteins regulating cell polarity might be involved in their formation. Indeed, the polarity protein PAR-3 is required for normal spine morphogenesis. However, this function is independent of associat...
متن کاملLoss of aPKCλ in Differentiated Neurons Disrupts the Polarity Complex but Does Not Induce Obvious Neuronal Loss or Disorientation in Mouse Brains
Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS develo...
متن کاملRho-kinase phosphorylates PAR-3 and disrupts PAR complex formation.
A polarity complex of PAR-3, PAR-6, and atypical protein kinase C (aPKC) functions in various cell polarization events. PAR-3 directly interacts with Tiam1/Taim2 (STEF), Rac1-specific guanine nucleotide exchange factors, and forms a complex with aPKC-PAR-6-Cdc42*GTP, leading to Rac1 activation. RhoA antagonizes Rac1 in certain types of cells. However, the relationship between RhoA and the PAR c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 22 شماره
صفحات -
تاریخ انتشار 2006